This OLS/MLR review assumes that you have already taken a look at the OLS/SLR Analytics/Assessment review, and is accordingly based on what is new and different with MLR analysis. You may want to revisit the OLS/SLR *Review* to refresh your recollection.

This review is somewhat repetitive... but I hope that's a good thing!

Let's work with the *bodyfat* dataset (feel free to follow along in Stata... use *bcuse bodyfat* to access the data). In the full MLR model, *brozek* has been regressed on *hgt*, *wgt* and *hip*; the *hip* variable has been dropped in the second MLR model; and the third model is a collinearity regression in which *hip* has been regressed on the two surviving variables (*hgt* and *wgt*):

Full Model						
Source	ss	df	MS	Number		252 71 25
Model	6,980	dofs	2326.69			71.25 0.0000
Residual	8,099	248	32.657	R-sqı	lared	0.4629
	4			_		0.4564
Total	15,079	251	60.076	Root	MSE —	— 5.7146
brozek	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hgt	6164	.1115	-5.53	0.000	8360	3968
wgt	.1552	.0404	3.84	0.000	.0756	.2349
hip	.1314	.1601	0.82	0.412	1839	.4468
_cons	21.268	13.89	1.53	0.127	-6.087	48.624
Variable Wgt hip hgt Mean VIF	10.85	1/VIF 0.0922 0.0989 0.7802				
Source	ss	df	MS			252
Model	6,958	 2	3479.03		249) = > F =	106.67 0.0000
Residual	•	249			ared =	
	· · ·			_		0.4571
Total	15,079	251	60.076			5.7109
brozek	Coef.	Std. Err.	t P	 -> t	[95% Conf.	Interval]
hgt	6503	.1035	-6.29 0	.000	8541	4466
wgt	.1867	.0129	14.48 0		.1613	.2121
_cons	31.155	6.913	4.51 0		17.539	44.771

Collinearity Regression

Source	ss	df	MS		er of obs =	252
Model Residual	11,608 1,274	2 249	5804.00 5.1175	F(2, Prob R-squ Adi F	> F	1,134 0.0000 0.9011 0.9003
Total	12,882	251	51.3237	Root	-	2.2622
hip	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hgt wgt _cons	2586 .2393 75.231	.0410 .0051 2.738	46.85 0	.000	3393 .2292 69.838	1779 .2494 80.625

. summ Brozek hgt wgt hip

Variable	Obs	Mean	Std. Dev.	Min	Max
Brozek	252	18.94	7.751	0	45.1
hgt	252	70.15	3.663	29.5	77.75
wgt	252	178.92	29.389	118.5	363.15
hip	252	99.90	7.164	85	147 .7

- 1) Highlighted figures in previous regression models
 - a) **dof**: degrees of freedom are now n-k-1=252-3-1=248, where n=#obs and k=#RHS vars

b) adjusted
$$R^2$$
: $\bar{R}^2 = 1 - \frac{SSR}{SST} \frac{n-1}{n-k-1} = 1 - \frac{8,099}{15,079} \frac{251}{248} = .4564$
 $= 1 - \frac{MSE}{S_{yy}} = 1 - \frac{32.657}{15,079/251} = .4564 \dots R^2$ is modified so that RHS variables don't get credit for just showing up; $\bar{R}^2 < R^2 \le 1$; moves in opposition to $MSE/RMSE$

- c) *multicollinearity (hip)* (R_j^2) : R^2 from the collinearity regression; can also be calculated using the Variance Inflation Factor, $VIF_x = \frac{1}{1 R_x^2} = \sqrt{\frac{1}{1 .9011}} = 1.28$
- d) *endogeneity* (omitted variable impact/bias): illustrated by the change in the estimated *wgt* coefficient when *hip* is dropped from the Full Model... product of the *hip* coefficient in the Full Model and the *wgt* coefficient in the collinearity regression:

2

$$\Delta \hat{\beta}_{wgt} = .1867 - .1552 = .1314 \cdot .2393 = .03145$$

- 2) What's new and different since OLS/SLR Analytics and Assessment? ... Not much! Here are the main differences:
 - a) Analytics
 - i) Estimated coefficients: For SLR models, the formulas for the estimated OLS coefficients are fairly simple; for MLR models, they are more complicated.
 - ii) Collinearity
 - (1) Impacts/factors
 - (a) One of the factors in omitted variable impact/bias (endogeneity)
 - (b) Affects SRF interpretation of OLS coefficients... sort of
 - (c) Impacts standard errors (precision of estimation)... a concept that will arrive later
 - (d) Can lead to wacky results (don't make the mistake of tossing important RHS variables just because they were highly collinear with one another)
 - (e) Explanatory power: less collinear RHS variables have the potential for more independent explanatory power... because they are more independent from the other RHS variables
 - (2) Metrics
 - (a) R-sq from collinearity regression (R_i^2)
 - (i) captures extent to which a particular RHS var can be explained (predicted) by the other RHS variables
 - (ii) logical extension of the concept of correlation to sets of more than two variables
 - (b) Variance Inflation Factor (VIF): $VIF_x = \frac{1}{1 R_x^2}$ (easier way to generate the R_j^2 's.
 - iii) Endogeneity (Omitted Variable Impact/Bias): extent to which OLS estimated coefficients are impacted by the exclusion of explanatory (RHS) variables from the model
 - (1) What drives that impact: The product of...
 - (a) OLS coefficient of the omitted variable when it's in the Full model
 - (b) OLS coefficients of surviving variables (left in the model) in the collinearity regression in which the omitted variable is regressed on the surviving variables. From the notes:

¹ Warning: Some of this is a bit repetitive with the preceding... but Hey, why not? ... It's a review!

3

- Full Model: SRF_y: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_x x + \hat{\beta}_z z$
- Collinearity Regression: SRF_z: $\hat{z} = \hat{\alpha}_0 + \hat{\alpha}_x x$ (the omitted variable, z, is regressed on the surviving variable, x)

Omitted Variable Bias (dropping z; impact on the x coeff.: $\hat{\alpha}_x \hat{\beta}_z$)

	z coeff. in the MLR Full Model (SRF _y)					
x coeff. in the SLR Collinearity Regression (SRF _z)	$\hat{eta}_z > 0$	$\hat{\beta}_z = 0$	$\hat{eta}_z < 0$			
$\hat{\alpha}_x > 0$	positive	0	negative			
$\hat{\alpha}_x = 0$	0	0	0			
$\hat{\alpha}_x < 0$	negative	0	positive			

- (2) What to do about it?
 - (a) Don't be lazy... grab the data and see what the impact is.
 - (b) If you can't get the data, maybe try using some proxy variables?
 - (c) And if you can't find proxy variables, maybe try the IV (Instrumental Variable) approach... but be careful, as it can be quite squishy!
 - (d) And if all else fails, maybe you can qualitatively evaluate the sign/direction of the impact (thinking about signs of coefficients ... see above)
- iv) What's New? ... and What's Left?
 - (1) WhatsNew_x: the residuals when the RHS variable x is regressed on the other RHS variables... captures the part of x not explained by the other RHS variables
 - (2) WhatsLeft_y: the residuals when the LHS variable y is regressed on the RHS variables other than x... captures the part of y not explained by the other RHS variables (other than x)
 - (3) The x coefficient from the MLR model, $\hat{\beta}_x$, can also be generated by two SLR models:

(a) reg y WhatsNew_x ...
$$\hat{\beta}_x = corr(y, WhatsNew_x) \frac{S_y}{S_{WhatsNew_x}}$$

- (b) reg WhatsLeft_y WhatsNew_x ... $\hat{\beta}_x = corr(WhatsLeft_y, WhatsNew_x) \frac{S_{WhatsLeft_y}}{S_{WhatsNew_x}}$
- (c) And so the sign of $\hat{\beta}_x$, agrees with the sign of the two correlations just discussed.

4

- (d) *corr*(*WhatsLeft*_y, *WhatsNew*_x) is a *partial* correlation... where the effects of the other RHS variables have been *partialed out*, prior to calculating the correlation.
- b) Assessment
 - i) R-sq is of limited usefulness in evaluating MLR models, since it never declines when RHS variables are added to the model (and typically increases... unless the coefficient for the new variable is zero, or the new variable is perfectly collinear with the other RHS variables)
 - ii) Degrees of freedom: dofs = n k 1 (n obs and k RHS vars)
 - iii) Adjusted R-sq doesn't merely give new RHS variables credit for just showing up... adj R-sq only increases if the drop in SSRs exceeds some minimum level:

$$\overline{R}^2 = 1 - \frac{SSR}{SST} \frac{n-1}{n-k-1} < 1 - \frac{SSR}{SST} = R^2 \le 1$$

- (1) When adding and subtracting RHS variables, \bar{R}^2 moves in opposite direction from MSE/RMSE (assuming S_{yy} fixed), since $\bar{R}^2 = 1 \frac{MSE}{S_{yy}}$
- iv) When dofs are changing, we often pick between models based on adj R-sq, among other factors.
- 3) Estimated OLS/MLR coefficients, SRFs and elasticities (Even more repetitive of the prior material... but again, maybe helpful.)
 - a) OLS: Minimize $SSR = \sum (u_i)^2 = \sum (brozek_i (b_0 + b_{hgt}hgt_i + b_{wgt}wgt_i + b_{hip}hip_i))^2$ wrt b_0 , b_{hgt} , b_{wgt} and b_{hip} (FOCs and SOCs)
 - b) slope coefficients (hgt, wgt and hip):
 - i) $\hat{\beta}_{hot} = -.616$, $\hat{\beta}_{wot} = .155$ and $\hat{\beta}_{hin} = .131$
 - ii) formulas are complicated; but coefficients can be generated by regressing y's (or *WhatsLeft* of y's) on *WhatsNew* about x's
 - c) Intercept coefficient (_cons): $\hat{\beta}_0 = \overline{y} (\hat{\beta}_{hgt} \overline{hgt} + \hat{\beta}_{wgt} \overline{wgt} + \hat{\beta}_{hip} \overline{hip})$ = 18.94 + (-.616(70.15) + .115(178.92) + .131(99.90)) = 21.27
 - d) SRF (Sample Regression Function; predicteds): $\hat{y} = \hat{\beta}_0 + (\hat{\beta}_{hgt}hgt + \hat{\beta}_{wgt}wgt + \hat{\beta}_{hip}hip)$ $\hat{y} = 21.27 + (-.616 \, hgt + .155 \, wgt + .131 \, hip)$

5

i) average marginal effects: $\frac{\partial \hat{y}}{\partial hgt} = \hat{\beta}_{hgt} = -.616$; $\frac{\partial \hat{y}}{\partial wgt} = \hat{\beta}_{wgt} = .155$; $\frac{\partial \hat{y}}{\partial hip} = \hat{\beta}_{hip} = .131$

ii) elasticity @means:
$$\mathcal{E}_x = \frac{\partial \hat{y}}{\partial x} \frac{\overline{x}}{\overline{y}}$$
, and so...

(1)
$$\varepsilon_{hgt} = \frac{\partial \hat{y}}{\partial hgt} \frac{\overline{hgt}}{\overline{y}} = \hat{\beta}_{hgt} \frac{\overline{hgt}}{\overline{y}} = -.616 \frac{70.15}{18.94} = -2.28$$

(2)
$$\varepsilon_{wgt} = \frac{\partial \hat{y}}{\partial wgt} \frac{\overline{wgt}}{\overline{y}} = \hat{\beta}_{wgt} \frac{\overline{wgt}}{\overline{y}} = .155 \frac{178.92}{18.94} = 1.47$$

(3)
$$\varepsilon_{hip} = \frac{\partial \hat{y}}{\partial hip} \frac{\overline{hip}}{\overline{y}} = \hat{\beta}_{hip} \frac{\overline{hip}}{\overline{y}} = .131 \frac{99.90}{18.94} = .69$$

(4) ... can also generate using the Stata margins command:

margins, eyex(_all) atmeans

- 4) Goodness of Fit metrics: MSE/RMSE, R^2 and \overline{R}^2
 - a) Degrees of freedom (dofs): dofs = n k 1 = 252 3 1 = 248

b) (Root) Mean Squared Error:
$$MSE = \frac{SSR}{n-k-1} = \frac{8,099}{248} = 32.657$$
, and $RMSE = \sqrt{MSE} = \sqrt{\frac{SSR}{dofs}} = \sqrt{32.657} = 5.7146$

c) Coefficient of Determination:

i)
$$R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{8,099}{15,079} = 0.4629$$

ii)
$$R^2 = \frac{SSE}{SST} = \frac{6,980}{15,079} = 0.4629$$

iii) $R^2 = \rho_{\hat{y}y}^2$ (square of correlation between predicted and actuals)

Since...

$$R^2 = \rho_{\hat{y}y}^2 = .6804^2 = 0.4629$$

 $^{^2}$ Elasticities are not required to be evaluated at the means... but they have to be evaluated somewhere... and why not start @ the means?

d) Adjusted R-squared:
$$\overline{R}^2 = 1 - \frac{n-1}{n-k-1} \frac{SSR}{SST} = 1 - \frac{251}{248} \frac{8,099}{15,079} = .4564$$

5) Collinearity Regressions

- a) Collinearity metric: $R_j^2 = .9011$
- b) Variance Inflation factor (*VIF*): $VIF_{hip} = \frac{1}{1 R_{hip}^2} = \frac{1}{1 .9011} = 10.11$
- 6) MLR coefficients: What's New? ... What's Left?

Full Model

. reg brozek hgt wgt hip

Source	ss	df	MS	Number of ob	os = =	252 71.25
Model Residual	6980.06726 8098.94937	3 <u>248</u>	2326.68909 32.6570539	Prob > F R-squared Adj R-square	=	0.0000 0.4629 0.4564
Total	15079.0166	251	60.0757635	-	=	5.7146
brozek	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
hgt wgt hip _cons	6163599 .1552489 <u>.1314181</u> 21.26829	.1114903 .0404222 .1600891 13.88907	3.84 0.82	0.0008359 0.000 .0756 0.4121838 0.127 -6.087	344 8896	3967713 .2348635 .4467257 48.62386

Generate WhatsNew about hip [regress hip on hgt and wgt and capture residuals]

- . reg hip hgt wgt
- . predict whatsnew, resid
- . reg brozek whatsnew

[slope coeff. agrees with MLR coeff.]

Source	SS	df	MS		er of obs	=	252 0.37
Model Residual	22.0071353 15057.0095	1 250	22.0071353 60.228038	B Prob B R-sq	> F uared	=	0.5461 0.0015
Total	15079.0166	251	60.075763	-	R-squared MSE	=	-0.0025 7.7607
brozek	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
whatsnew _cons	.1314181 18.93849	.2174066 .4888764	0.60 38.74	0.546 0.000	296763 17.9756		.5596 19.90133

. summ whatsnew Brozek

Variable	Obs	Mean	Std. Dev.		Max
whatsnew	 252	5.19e-09		-8.390721	9.494614
Brozek	252	18.93849	7.750856	0	45.1

. corr Brozek whatsnew
(obs=252)

		whatsnew
<u>:</u>	1.0000	
whatsnew	0.0382	1.0000

Check: . di .0382*7.750856/2.253148

.13140846

Generate WhatsLeft with brozek [regress brozek on hgt and wgt and capture residuals]

- . reg brozek hgt wgt
- . predict whatsleft, resid
- . reg whatsleft whatsnew

[slope coeff., SSRs agree with MLR; MSE, RMSE, se and t are close (dof difference)]

Source	ss	df	MS	Number of obs	=	252 0.68
Model Residual	22.0071338 8098.94924	1 <u>250</u>	22.0071338 32.3957969	Prob > F R-squared	=	0.4106 0.0027
Total	8120.95637	251	32.3544078	Adj R-squared Root MSE	=	-0.0013 <u>5.6917</u>

whatsleft	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
whatsnew	.1314181 9.87e-09	.1594475	0.82	0.411	1826135 7061544	.4454496

Here's $\underline{\text{partial}}$ correlation between the brozek and hip ... the correlation between whatsnew and whatsleft:

. corr whatsleft whatsnew
(obs=252)

	whatsleft	
whatsleft		
whatsnew	0.0521	1.0000

. summ whatsnew whatsleft

Variable	•	Mean			Max
whatsnew				-8.390721	
whatsleft	252	1.05e-08	5.688094	-18.54253	14.68069

Check: . di .0521 * 5.688094/2.253148

.13152696